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Abstract
We present a case study of how scientometric tools can reveal the structure of scientific

theory in a discipline. Specifically, we analyze the patterns of word use in the discipline of

cognitive science using latent semantic analysis, a well-known semantic model, in the

abstracts of over a thousand academic papers relevant to these theories. Our results show

that it is possible to link these theories with specific statistical distributions of words in the

abstracts of papers that espouse these theories. We show that theories have different

patterns of word use, and that the similarity relationships with each other are intuitive and

informative. Moreover, we show that it is possible to predict fairly accurately the theory of

a paper by constructing a model of the theories based on their distribution of word use.

These results may open new avenues for the application of scientometric tools on theo-

retical divides.

Keywords Latent semantic analysis � Cognitive science � Text analysis � Theoretical
issues

Introduction

Cognitive science is the interdisciplinary study of mind. It is about 50 years old, depending

on how you count (Bechtel and Graham 1998). Its theoretical progress may be predicted by

this youthful age—it has seen the rise of fall of various conflicts, and has not yet estab-

lished a consensus identity in its aims and foundations. This is to be expected in a young

field, of course. Its conflict often derives from pointed, yes-no theoretical questions: Can

we analyze the brain much like a computer? Or does that metaphor ultimately fail, and

need contributions from other ideas? Is the mind fully encapsulated in the cranium, or does

it also fundamentally involve the body? Should social processes play a critical role in our

theories of the mind? These theoretical points of conflict have been famously lamented

& Pablo Contreras Kallens
pc684@cornell.edu

1 Department of Psychology, Cornell University, Ithaca, NY 14853, USA

2 Cognitive and Information Sciences, University of California, Merced, USA

3 Department of Communication, University of California, Los Angeles, USA

123

Scientometrics (2018) 116:1641–1674
https://doi.org/10.1007/s11192-018-2811-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-3805-3488
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-018-2811-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-018-2811-x&amp;domain=pdf
https://doi.org/10.1007/s11192-018-2811-x


early in its history (Newell 1973). To a great extent, these debates are ongoing. Our goal in

this paper is to test whether the tools of scientometrics can help quantify this theoretical

landscape of cognitive science. We develop a semantic model from a small corpus of

abstracts, and explore the quantitative relationship among different perspectives. We hope

that a scientometric approach can facilitate grounding the theoretical discussion in oper-

ationalized patterns of scientific behavior. We show that indeed the theories of cognitive

science may be usefully quantified in this manner. In what follows, we first provide further

background on this issue, and summarize our computational approach. Following this, we

take a first step towards quantifying the theoretical landscape of cognitive science.

Background and motivation

Cognitive science has changed considerably since the relative dominance of the infor-

mation-processing approach that characterized the 1980s and 1990s (Von Eckardt 1995).

Core assumptions of the discipline have been put into contention, such as the extent to

which computation as a metaphor for mental activity is useful for its explanation (Van

Gelder 1995), the role of representation (Chemero 2011) or the relevant unit of analysis for

its study (Hollan et al. 2000). This tension has sprung from the appearance of new theo-

retical views that challenge some or all of the traditional assumptions that characterized the

discipline (Clark 1998). Moreover, the situation has manifested itself through substantive

disagreements that have not yet been resolved, such as how much we consider the envi-

ronment to be part and parcel of the cognitive system (Adams and Aizawa 2010; de

Oliveira and Chemero 2015), the role of the body in mental simulation (Zwaan 2014), and

the implications of the effective use of dynamical systems tools in explaining cognition

(Bechtel and Abrahamsen 2006). Despite several proposals for overcoming this theoretical

quandary (Dale 2008; Edelman 2008; Louwerse 2011; McCauley and Bechtel 2001;

Yoshimi 2012; Zwaan 2014), cognitive science remains relatively fractionated

theoretically.1

Our goal in this paper is to explore a possible quantitative framing of this problem that

can act as a supplement to qualitative and argument-based accounts of the theoretical

landscape of cognitive science. We use bibliometric data, specifically word use in

abstracts, to map the theoretical perspectives and their relationships. We test a latent

semantic model of the field, observing how it represents the different features of these

theories, how they relate to each other, how the semantic space underlying word use relates

to theories, and how these different semantic dimensions could be characterized. With this,

we aim to take a first step toward a quantitative understanding of cognitive science’s

conceptual landscape.

Theories of cognitive science

The theoretical landscape of cognitive science

As stated above, our goal is to explore the theoretical divisions of cognitive science using

quantitative tools. To motivate this exploration, an important first step is to identify some

intuitive notions of this theoretical landscape. Here we identify some common traditions

that have framed historical and more recent cognitive science. Although there are many

1 For an example of such an overarching division, see the exchange between McClelland et al. (2010) and
Griffiths et al. (2010).
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taxonomies of the different theoretical approaches currently coexisting within the disci-

pline, the general movement questioning core assumptions that appeared mainly during the

1990s is often labeled as embodied cognition (Rowlands 2010; Shapiro 2010; Ziemke

2003; Gomila and Calvo 2008). The broad movement that confronts or minimizes the

relevance of embodiment can be identified with the label cognitivism (Varela et al.

2017, p. 37; Haugeland 1978). However, within these broad perspectives there exist

several more specific stances on the key issues of cognition. For the present study, we

focus on 8 perspectives, providing a brief description and canonical references for each:

• The symbolic approach to cognitive science is often regarded as the longest-standing

modern perspective, in which cognition is interpreted as computations over internal

states imbued with semantic properties (Fodor 1975; Haugeland 1981).

• Connectionism represents cognition as emerging from the computational activity of a

brain-inspired network of interconnected nodes, with parallel distributed processing

and neural network models serving as the primary mechanisms of this tradition

(Rumelhart et al. 1987; Feldman and Ballard 1982; Smolensky 1988).

• Bayesian approaches have grown prominent in the past decade. These approaches

model cognition as rational probabilistic inference (Tenenbaum et al. 2011; Hohwy

2013; Oaksford and Chater 2009; Tenenbaum et al. 2006).

• Embodied cognition is often an umbrella phrase used to refer to several more specific

approaches in varying degrees of disagreement with cognitivism (Wilson 2002),

particularly the remaining approaches on this list. It can also refer to a more specific

approach that focuses on showing how cognitive processes depend on bodily factors

(Barsalou 1999; Gibbs 2005).

• Distributed cognition focuses on processes that happen at a scale larger than the

individual, and treats these processes as an important part of cognition (Hollan et al.

2000; Hutchins 1995; Cowley 2011).

• Enactive approaches put an emphasis on the self-organization of organisms, and how

actively integrating with the environment generates meaningful albeit much simpler

internal processes than those typically posited by traditional symbolic approaches (Di

Paolo 2005; Stewart et al. 2010).

• Dynamical models of cognition posit that dynamical systems, and their modeling

through differential equations, are a useful model for the organization of cognition,

complementing, or even replacing, computation (Beer 1995; Thelen and Smith 1996;

Spivey 2008).

• Ecological psychology, heavily influenced by the work of (Gibson 1979), contends that
‘‘cognition’’ includes both the organism and its environment. The structuring of an

environment, and the close coupling of organisms to their environmental niches, allow

for the direct perception of possibilities for action. This approach often seeks to explain

behavior without appealing to internal representations (Kugler and Turvey 2015;

Richardson et al. 2008; Gibson and Pick 2000; Michaels and Carello 1981).

By focusing on these particular traditions, the theoretical panorama of cognitive science

appears much more complicated than what the overarching narrative of new ‘‘embodied’’

theories versus old ‘‘cognitivist’’ theories suggests. Instead, the theoretical landscape of

cognitive science is articulated by different concepts and stances on core problems in the

discipline. There have been attempts to organize these different strands. As an example,

Chemero and Silberstein (2008) organize the discipline as a tree around several branches,

according to the answers they provide to questions such as the role of representation and

the correct unit of analysis for cognitive science. Other works have focused on specific
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issues, such as the role of the individual (Wilson 2004), the content of representations

(Anderson 2003), the proper contribution of the body for cognition (Wilson 2002; Shapiro

2010), or the differences in explanatory schemes used by different theories (Stepp et al.

2011). Nevertheless, much discussion of the theoretical landscape of cognitive science has

remained qualitative, often involving intuitive prescriptions rather than quantitative

explorations.

Much like most areas of science, the literature of cognitive science now grows faster

than any individual can track. This has resulted in theoretical analysis relying on more

philosophically-oriented writing. This could help to exacerbate a growing divide between

the abstract, philosophical characterizations of the disagreement, and its manifestation in

the broader empirical work. Moreover, purely qualitative approaches to describing a the-

oretical landscape could be less convincing than approaches that use quantitative data.

Qualitative analyses in the philosophical and theoretical literature are almost always car-

ried out by devotees of one or another perspective. This makes it difficult to remain

conceptually impartial, and may neglect the rather more concrete ways that theories play

out in the empirical work that the theories are meant to motivate.

The goal of the present paper is to develop a more quantitative approach to this issue,

based on the patterns of word use in documents produced by these different theories.

Though at this stage our approach and results might be regarded as preliminary, we show

that a quantitative analysis of texts can shed light on the relationships among these the-

oretical frameworks able to act as a supplement to other, more qualitative analyses.

Word use as a window to theory

Our analysis is based around word use—more specifically, their patterns of co-occur-

rence—on scientific texts produced by authors identifiable with different theories inside of

cognitive science. Apart from this being the standard methodology for the kind of semantic

model we use (Landauer et al. 1998), it also relates to prominent historical characteriza-

tions of theoretical landscapes inside of scientific disciplines. For instance, in The His-

torical Meaning of the Crisis in Psychology, Vygotsky (1997) analyses the then-current

state of his discipline. According to his view, psychology was stagnating due to a deep

stalemate between competing theories with substantive differences in the conception of

their object of study. The most relevant part of his argument for our purposes is that one of

the manifestations of this theoretical crisis is changes in word use. According to Vygotsky,

different perspectives employ different words, as words are the ‘‘end point and not the

starting point of the investigation’’ (1997, p. 285). Word use can be seen to reflect ‘‘the

highest principles’’ (1997, p. 288) that a theory upholds, acting as a ‘‘tentacle’’

(1997, p.286) to grasp how a theory conceptualizes and explains a fact.

A similar view can be seen in Kuhn’s later work in the concept of a scientific com-

munity’s lexicon (Kuhn 2000a). With this term, Kuhn refers to a subset of terms whose

meaning is interdependent, that together characterize the taxonomy to which a particular

approach is committed. When different approaches to the phenomena of a discipline

redraw these taxonomic boundaries, they put forward changes to the lexicon of the dis-

cipline. Word use is at least to some degree characteristic of the theoretical landscape of a

discipline, and crises and revolutions within a discipline can be signaled by the ‘‘violation

or distortion of a previously unproblematic scientific language’’ (Kuhn 2000b, p. 32).

Both approaches share the view that word use can reveal underlying features of a

discipline; and, moreover, that these underlying features reflect substantive disagreements
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over key issues. Different theoretical perspectives could be correlated with different pat-

terns in the choice of words the authors that espouse them make. Thus, a way forward for

complementing qualitative discussion of theoretical landscapes is a data-driven analysis of

the word use of the documents produced by the different theories that constitute the

discipline.

As mentioned before, our approach to word use is through a semantic model that

uncovers the semantic space underlying a set of documents. Latent semantic analysis

(LSA) assumes that, although noisy, the distribution of words used in a document refer-

ences a space of concepts that can be statistically retrieved from word co-occurrence

information (Deerwester et al. 1990). Furthermore, against a backdrop of historical

metatheory from Vygotsky and Kuhn, a method like LSA may help map words into a

semantic space so that we can determine their theoretical import. Indeed, such a repre-

sentation of words may then be used to map the theories themselves. This is our goal here.

LSA represents the set documents using a vector space model (Salton et al. 1975) in an

asymmetrical matrix in which each paper is characterized by the frequency with which

each unique word in the set is used in it. The document by term matrix is then subjected to

singular value decomposition (SVD) that statistically groups word contexts and the pat-

terns in which they occur (Landauer et al. 1998). This procedure creates a new set of

dimensions that encodes statistical relationships across the whole set. Each dimension of

the reduced dimensionality matrix has a different weight in each document, reflecting the

concepts that a document expresses. More concretely, in contrast with the previous doc-

ument by term matrix, documents in the resulting matrix are characterized by their score in

each of the dimensions resulting from the SVD, which constitute the semantic space. The

most relevant feature of LSA for our purposes is that the new dimensions reflect higher-

order properties of the documents than what word frequency does. Therefore, previously

veiled similarity or dissimilarity relationships between documents surface, allowing us to

infer much more accurately the grouping structure of a given set of documents (Landauer

and Dumais 1997).

There are precedents of the use of LSA to model the semantic space of sets of scientific

documents. In their seminal work, Deerwester et al. (1990) use LSA to represent two

different sets of scientific documents and compare its rate of successful retrieval of these

documents from the index with the performance of other methods of co-word analysis.

They found that LSA could be successfully used to uncover the structure of sets of

scientific documents. More recently, Blatt (2009) shows that a LSA can represent four

different disciplines using a purely bottom-up procedure on a set of documents. The

clusters that these semantic representations form can then successfully classify and dif-

ferentiate documents from these disciplines. Paxton (2015) used a semantic model on

author-provided keywords to visualize the relationships between different terminology

used to refer to inter-personal coordination in abstracts from cognitive science. Finally,

Alhazmi et al. (2017) applied LSA to a database of neuroimaging results, showing how the

relationship between cognitive functions and brain areas can be modeled as an underlying

semantic space.

Our interest lies in exploring the theoretical composition of a scientific discipline, in

contrast with the issues about which these theories take substantively different stances.

While the latter has been the focus of meaning-based approaches to modeling science, the

former has been explored primarily through citation analysis (Leydesdorff 1998). This use

of citation analysis was delineated early by Garfield et al. (1970) as an aid to studying the

history of a discipline, an issue or a theory. Moravcsik and Murugesan (1979) also discuss

how citation patterns mirror scientific revolutions, specifically, in their case, in theoretical
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physics. More recently, Marx and Bornmann (2010, 2013) have used citation analysis as

data with which theories of scientific change can be tested. All these suggest that scien-

tometric data can potentially be used to model the theories that exist within a discipline.

However, can theoretical features of science be observed in data other than through citation

analysis?

Our approach is an attempt to apply a semantic-based tool to the modeling of different

theories inside cognitive science. We performed a LSA on a corpus of papers that belong to

different theories. Our aim was to show that differences in theoretical stances are signif-

icantly related to differences in patterns of word use. For this, first we tested if the patterns

of word use of the different theories have significantly different features using simple

measures of inner coherence and similarity to other theories. Secondly, we examined the

clustering of different theories based on how similar the words used in the documents

belonging to them are. Thirdly, we tested the accuracy of a model that predicts the theory

of a document based on the patterns of word use exhibited by the documents of each

theory. In all of these tests, we found that different theories have significantly different

patterns in word use, that the similarities of these patterns matches the intuitive relation-

ships between these theories, and that statistical models of these patterns are specific

enough of each theory that they can be fairly predictive of the theory to which a paper

pertains. We finalize with a tentative exploration of the terms that characterize each theory

based on the statistical models of their location in the semantic space.

Methods

Data collection

Our data consists in abstracts obtained from Thomson Reuters’ Web of Knowledge (WOK)

using keywords related to these theoretical perspectives within cognitive science.2 The

database was queried for each keyword and a date range from 1975 to 2016, and the results

were sorted by citation count. We filtered the results by discipline and document type (see

‘‘Appendix 1’’). We downloaded the first 100 complete citation information results for

each keyword. This resulted in a dataset of 1000 abstracts. Though small, it is a focused

sample of the literature with WOK keywords that reflect our theoretical set. It also made it

easy to ensure that the papers were relevant to the domains under investigation, namely, the

theories of cognitive science.

Next, the abstracts were cleaned in the following way:

• All words were set to lower case.

• The occurrences of the keywords used to obtain them from WOK (Table 1) were

removed.

• Possessive, punctuation and copyright marks and notices were removed.

• Using the nltk Python package (Bird et al. 2009), all words not recognized as

adjectives, nouns or verbs were removed.

• The remaining words were lemmatized using the nltk package version of the WordNet

Lemmatizer.

This procedure yielded a list of 9014 unique terms. These were used to construct a

document-by-term matrix (DbT) in which each of the 1000 abstracts were represented as a

2 All raw data, scripts used for analysis, and analyzed data used for generating the figures are available at
http://github.com/contreraskallens/ExploratoryMapping.
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row stating the frequency with which each term appeared in that document. We removed

terms which appeared in only 5 or fewer documents. Furthermore, we used a custom list to

remove hand-picked terms corresponding to stop words and stylistic words (e.g. ‘‘Fur-

thermore’’), and variations of the theory words that the nltk package missed. We then

removed all empty documents resulting from that procedure. This procedure returned a

DbT of 964 � 1912.

Because of the distortion that document length introduces into some of the measures of

similarity that we will use later,3 we examined the differences in abstract length among the

different theories. A one-way ANOVA showed that there are no significant differences in

the length of the abstracts by theory, Fð7; 956Þ ¼ 1:699; p[ 0:1. Furthermore, a regression

analysis of the length of documents as predicted by the different theories showed that only

ecological is significantly different from the intercept (Bayesian),

B ¼ � 10:719; SE ¼ 3:805; t ¼ � 2:817; p\0:01. This single difference of ecological does

not account for the systematic results we report below.

Each column of the DbT was further prepared by weighting each cell using the log-

entropy procedure presented by (Martin and Berry 2007, p. 38) term-wise (see ‘‘Appendix

2’’). Along with the the log normalization, this resulted in an increase of the weight of

terms which appear in fewer documents (and are thus more informative), and a decrease in

the weight of terms which appear in more documents.

Finally, the resulting matrix was subjected to a SVD procedure using the base R

function (R Core Team 2017). This results in three different matrices: one that weighted

every document by the new dimensions (964� 964), one that weighted every term by the

new dimensions (1974� 964), and one that contains the singular values (964� 1). We

obtained the loadings matrix of both document and terms by multiplying their respective

matrices with a diagonal matrix constructed from the singular values. We only saved the

first 200 dimensions of the loadings: that is, a 964� 200 reduced document loadings

matrix, and a 1912� 20 reduced unique term loadings matrix.

These matrices of lower dimensionality have been shown to encode semantic rela-

tionships by finding regions of shared variance across word co-occurrence patterns. In the

following analyses, we utilize relatively small subsets of the D ¼ 200 filtered dimen-

sionality from the LSA output. We report this dimensionality D in each case.

Table 1 Keywords used to look for abstracts and their related theory using the ‘‘topic’’ methodology of
WoK

Theory Keywords

Classical computational Act-R Computational cognitive model

Connectionism Connectionism ‘‘Parallel Distributed Processing’’

Dynamical systems Dynamical Systems Cognition

Ecological psychology ‘‘Ecological Psychology’’

Embodied cognition Embodied Cognition

Bayesian cognition Bayesian Cognition

Distributed cognition ‘‘Distributed Cognition’’

Enactivism Enactive Cognition

Quotes were used only when indicated

3 We thank an anonymous reviewer for pointing out this limitation.
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Results

Self-similarity of theoretical areas

Because we are interested in theoretical conflict, we used the LSA model to test how

theories relate in this statistical landscape. This can be tested in two ways. We can explore

how internally coherent theories are relative to themselves; we can also explore how

externally similar they are to abstracts under other theories.

In a first analysis, we examined how similar articles within a theory are to themselves.

For example, are word usage patterns among authors in the connectionism abstract set

more similar to each other, than, say, symbolic abstracts are to their own topic? This would

reflect the ‘‘internal consistency’’ of the topics, and we can compare the measure across

theories to determine if one or more of them is considerably more (or less) internally

consistent.

To do this, we took each abstract from a category, and generated the cosine similarity

between its lower-dimensional representation, using dimensions (from now on, D) 1

through 10 (D ¼ 10) and all the other abstracts from that category. For each abstract, this

produces a mean cosine. Cosine varies from � 1 to 1, with 1 reflecting perfect consistency

in word usage. By obtaining a cosine of articles within its own group, each domain is

assigned a ‘‘self-similarity’’ score based on these comparisons.

After doing this, we used a regression analysis to determine if the theory of the abstracts

predicts the variance in these self-similarity scores. Since all abstracts are independent data

points, we used a basic ordinary least squares (OLS) regression analysis, with a multi-

nomial factor of abstract category (as listed in Table 1).

Table 2 shows the output from this regression model. This table uses the Bayesian

category as the reference category because of the alphabetical ordering of the theories. The

coefficients represent the self-similarity score of each theory in comparison with Bayesian,

and whether the difference between their score and the score of Bayesian is significant.

The regression model is significant overall, Fð7; 956Þ ¼ 91:11, p\10�10. It suggests

that the variance in this self-similarity measure is accounted for quite substantially by these

8 categories. The adjusted R2 of the model is 0.396, suggesting that a rather high amount of

variance of word-use consistency is accounted for by theoretical topic.

The average cosine score for Bayesian topics is seen as the intercept in Table 2

(B ¼ 0:672). The regression model reveals that all topics except for distributed signifi-

cantly exceed or are lower than this baseline. The topics that significantly exceed the

Table 2 Results of self-similarity
regression

Topic B SE t

Bayesian (intercept) 0.672 0.008986 74.793***

Connectionism - 0.157 0.0112 - 14.117***

Distributed 0.00599 0.0127 0.47

Dynamical - 0.0403 0.0127 - 3.172**

Ecological 0.0331 0.0127 2.599**

Embodied - 0.083 0.0126 - 6.565***

Enactive 0.0752 0.0128 5.870***

Symbolic - 0.0766 0.011 - 6.973***

*p\ 0.01, **p\ 0.001, ***p\ 0.0001
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Bayesian cosine value are ecological (predicted to be greater by B ¼ þ 0:0331), and
enactive (B ¼ þ 0:0752). The topics that are significantly lower than Bayesian are con-

nectionism (B ¼ � 0:157), dynamical (B ¼ � 0:0403), embodied (B ¼ � 0:083), and

symbolic (B ¼ � 0:0766).
By these measures, the most self-similar topic is enactive, at a mean cosine of

approximately 0.747. The lowest is connectionism, with a mean self-similarity cosine of

0.515. In sum, we find considerable variation across theories in how internally consistent

they are on this landscape. Relatedly, we find that theoretical identity across the whole set

greatly predicts that internal consistency.

Qualitative inspection of theoretical clusters

To test if there are different relationships of similarity between theories, we built a distance

matrix using of the relations between theories. For this, we first obtained averages of the

cosine of the vector representation of each abstract and the vector representation of the

each of the abstracts of the theories being considered (including its own). This gives each

abstract a set of eight mean cosines. The abstracts were then grouped by the theory they

belong to, and the eight mean cosines were averaged. Thus, each theory is assigned eight

different cosines, one for each theory, including itself, representing the similarity of each

of its members to each of the members of each theory. This similarity matrix is presented

in Fig. 1 for D ¼ 10, that is, using dimensions resulting from the SVD 1 through 10. In it,

there are clear differences in the similarity between theories: Bayesian and symbolic are

more similar among themselves than they are to other theories, and the same is true for

distributed, enactive, dynamical and ecological. Embodied is also similar to the latter;

0.67 0.5 0.59 0.52 0.55 0.52 0.48 0.51

0.5 0.51 0.47 0.37 0.43 0.38 0.36 0.42

0.59 0.47 0.6 0.44 0.47 0.39 0.42 0.46

0.52 0.37 0.44 0.68 0.55 0.6 0.54 0.5

0.55 0.43 0.47 0.55 0.63 0.64 0.55 0.54

0.52 0.38 0.39 0.6 0.64 0.75 0.58 0.58

0.48 0.36 0.42 0.54 0.55 0.58 0.71 0.49

0.51 0.42 0.46 0.5 0.54 0.58 0.49 0.59embodied

ecological

enactive

dynamical

distributed

symbolic

connectionism

bayesian

bayesian

connectionism

symbolic

distributed

dynamical
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ecological

embodied
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0.50

0.75
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Fig. 1 Heatmap of the similarity matrix between theories for D ¼ 10. Color shows the mean cosine between
topics. Each cell has the mean cosine of documents of the theory of the row and the one of the column.
Theories have been sorted to better visualize clustering. (Color figure online)
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however, curiously, Bayesian has a slightly higher similarity to it than ecological and

distributed. Although similarity with other theories for Bayesian is high for all of them,

there are clear clusters on the heatmap: connectionism and symbolic have higher similarity

with each other than they do with distributed, enactive and ecological. Likewise, they have

the lowest mean cosines for distributed, dynamical, enactive and ecological.

To further explore these relations, the similarity matrix was transformed into a distance

matrix, and then subjected to a hierarchical clustering analysis, using the average linking

method of the hclust() function in R. Figure 2 is a dendrogram built with the results of the

hierarchical cluster analysis. The original dendrogram was cut into clusters using the

Dynamic Tree Cut R Package (Langfelder et al. 2008). This pattern is relatively

stable from D ¼ 6 to at least D ¼ 200. The dendrogram shows two main tree branches: on

the one side, connectionism, Bayesian and symbolic; on the other side, ecological, dis-

tributed, enactive, dynamical and embodied. Interestingly, the dendrograms for values

immediately lower than D ¼ 6 have Bayesian as part of the opposite cluster.

As implied by our definition of these theoretical approaches above, many cognitive

scientists would predict relationships of this kind (for an example, see Chemero and

Silberstein 2008). Thus, there seems to be a clear and intuitive clustering of the different

theories consistent with the situation of the description of the theoretical landscape of the

discipline provided in Sect. 2.1, and distinct from what would result from an unstructured

space (see ‘‘Appendix 3’’).

Predicting topics from semantic vectors

Based on the structure found on the results from the hierarchical clustering analysis, we set

out to determine if the values in each dimension resulting from the SVD of each abstract

could be used to predict the theory of a given abstract. For this, we evaluated each of the

first 80 dimensions of the result of the SVD, and ordered them for each topic based on how

effective values in each dimension were in correctly predicting that topic using a binary

logistic regression of the scores of that theory when pitted against all other theories. The

ecological enactive distributed dynamical embodied bayesian connectionism symbolic

0.
0

0.
1

0.
2

0.
3

0.
4

Fig. 2 Dendrogram built using the distance matrix of theories for D ¼ 10
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choice of the number of dimensions to be evaluated was based in predictive performance

(see ‘‘Appendix 4’’). With this, we could then evaluate not only how effective the lower

dimensions obtained from the SVD are in predicting the theory of an abstract, but also how

many of them are needed to obtain relevant results.

The procedure for theory prediction works in the following way. For any given value of

D, a generalized linear model (GLM) is built for each theory by using the first D dimen-

sions that best predict it, as described above. Each model is trained by using a training set

of random abstracts of each theory, constituting 70% of the total abstracts of that theory.

After that, each model is presented with the remaining abstracts. We collect the probability

of the prediction that each model gives for the abstract, and treat the highest one as the final

prediction. We also measured the performance of the models, that is, the percentage of

times in which the GLM with the highest probability was the same as the theory of the

abstract presented to the models. The results are mean aggregations of 10,000 iterations of

the process.

First, we swept through values of D from 2 to 50, to see how many dimensions were

needed to reliably predict the topic of the presented abstracts. Surprisingly, performance is

considerably high even for low values of D. For D ¼ 5 (Fig. 3), all theories have a

performance considerably higher than 12:5%. The highest values are connectionism, with

58:3%, symbolic with 56:8$ and Bayesian with 54:2%. The mean performance for this

value of D is 50:8% Although the value of D with the highest performance is different for

every theory, the overall performance seems to stabilize around D ¼ 10, with only slight

gains or losses with the addition of further dimensions. Peak mean performance is achieved

at D ¼ 20, with a performance of 64:6%. Figure 4 shows the performance for each theory

at this value of D. The highest performing model is ecological, with 72:5% correct pre-

dictions, closely followed by distributed with 70:4% and enactive with 69:4%. Every

theory has a correct prediction rate of at least 60%, except for the dynamical model, whose
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Fig. 3 Mean performance of the GLM of each theory using 5 dimensions for each. Solid line shows the
average performance. Dotdashed line shows chance of 12:5% performance. Results aggregate over 10, 000
iterations
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performance peaks at 47:6% for D ¼ 16. To see the prediction values of all theories across

all values of D tested, see ‘‘Appendix 5’’.

It is also possible to evaluate the level of clustering of the different theories explored.

Using both the correct and incorrect answer, a topic confusion matrix can be built for each

D, showing what percentage of times a paper of topic A was predicted as being a paper of

topic B. Taking into consideration the performance across values of D shown above, Fig. 5

shows the resulting confusion matrix for a value which yielded relatively good results

across all topics, D ¼ 20. The confusion of prediction shows that the performance of the

models reflects the clustering observed in Fig. 2. For symbolic, topics within its cluster,

Bayesian and connectionism, account for 18:9% of the remaining predictions, summing a

combined 86:8% when added to the percentage of correct predictions. For enactive, pre-

dictions outside of its observed cluster, symbolic, Bayesian and connectionism, account for

only 1:1% of the predictions, and for ecological they account for 3:3% of them. Fur-

thermore, a relatively low score like the one for dynamical, is offset by the high accuracy

of predictions within its cluster: 87:2%.

This latter case is more clearly observable in lower values of D (Fig. 6). At D ¼ 6, the

dimension in which the dendrogram observed in Fig. 2 becomes the predominant pattern,

the clusters are more manifest. Enactive stands 44:9% of performance; however, if taken

alongside with dynamical, embodied, and ecological, and to a lesser extent distributed and

distributed, the performance increases to around 99:1%. Bayesian has a performance of

60:1% and is predicted erroneously as a member of the other cluster only 16:1% of the

time. A similar phenomenon can be observed in all of the theories.
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Fig. 4 Mean performance of the GLM of each theory using 20 dimensions for each. Solid line shows the
average performance. Dotdashed line shows chance of 12:5% performance. Results aggregate over 10, 000
iterations
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Replication

Lastly, we tested our prediction methodology on a new set of papers. We downloaded an

additional 100 abstracts (per theory) using the same keywords and search filters. Thus, we

obtained a replication dataset of 967 papers with 9243 unique terms. These papers were

subjected to the same clean-up procedure as those in the original dataset, resulting in 926
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Fig. 5 Confusion matrix for D ¼ 20. Results aggregate 10, 000 iterations
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Fig. 6 Confusion matrix for D ¼ 5. Results aggregate 10, 000 iterations
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remaining documents with 1926 unique terms. After removing all words from these

abstracts that did not appear in the original data set, we projected these new documents

onto the original, reduced-dimensionality word-space using the folding-in method Berry

et al. (1995). This results in a set of matrices of the scores of each new document on the

dimensions obtained by reducing the original document-by-term matrix through SVD. In

other words, we used exactly the same LSA model in the prior analyses without retraining

on the new data, and tested how well that first model predicts these unseen data.

The prediction results by topic again show a considerably better than chance perfor-

mance for each topic with relatively small values of D. Figure 7 shows the prediction

performance for D ¼ 5. The cross prediction, even at this low dimensionality, is consid-

erably higher than chance. The highest performing models are symbolic with 52:8% and

distributed with 51:0%. Even the lowest performing model, dynamical, sits at more than

20% higher than chance. The mean performance of the models at this value of D is 45:9%.

Peak mean performance for the cross prediction is lower than using only the original

dataset, at 53:3% for D ¼ 17. Figure 8 shows the performance for the different theories at

this dimensionality. Ecological is by far the best performing model, achieving 65:9%. All

other models sit close to 50% performance except for dynamical, which is again the lowest

one at 38:8% (see ‘‘Appendix 5’’)

Similarly, the clustering observed in the original data is expressed in the prediction

confusion matrix (Fig. 9). Clusters still account for more than half of predictions in all of

the topics in low dimensionality (here, D ¼ 5). In the case of enactive, out-of-cluster

results account for only 1:6% of the predictions. Similarly, for ecological, in-cluster results

sum 97:7% of the predictions. Finally, for symbolic, an individual performance of 52:8%
increases to 77:5% when considering it along with Bayesian and connectionism predic-

tions. Interestingly, Bayesian is confused 13:1% of the times with ecological, and con-

nectionism is confused as much with with symbolic as it is with enactive.
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Fig. 7 Mean performance of the GLM of each theory using new data set, using 5 dimensions. Solid line
shows the average performance. Dot-dashed line shows chance of 12:5% performance. Results aggregate
10, 000 iterations
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Discussion

These results support the notion that different theories can be successfully represented by

using latent semantic analysis (LSA) on word use in abstracts. Firstly, we showed that the
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Fig. 8 Mean performance of the GLM of each theory using new data set, using 20 dimensions. Solid line
shows the average performance. Dot-dashed line shows chance of 12:5% performance. Results aggregate
10, 000 iterations
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Fig. 9 Confusion matrix for D ¼ 5 using replication data
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theories have different individual properties. There are statistically significant differences

between them in how terminologically coherent they are, and how similar they are to other

theories.

Secondly, the similarity relations between theories reflect the common characterization

of the field of cognitive science as ‘‘rooted’’ in two distinct traditions (Gomila and Calvo

2008; Spivey 2008; Chemero and Silberstein 2008; Wilson 2002; Contreras Kallens 2016;

Wheeler 2014; Menary 2010b). These characterizations have emphasized the existence of

two approaches to cognitive science: ‘‘classical’’, on the one hand, and ‘‘alternative’’ or

‘‘embodied,’’ both of them composed of different subsidiary theories that have varying

relationships to one another. Although there are competing characterizations of what

exactly is the difference between these two approaches, the former emphasizes cognition as

computation over internal representations, and the latter focuses on ways in which the

body, the environment, and social interaction, among others, can explain cognitive

capacities. The different sub-theories of each have different perspectives on the same kind

of approach to explaining cognition. This is especially visible on the ‘‘non-classical’’

approaches, as multiple fairly recent volumes published under the header of ‘‘embodied

cognition’’ actually include several of them (Shapiro 2014; Calvo and Gomila 2008;

Robbins and Aydede 2009) as do the various journal special issues exploring the topics

(Menary 2010a; Almeida e Costa 2005; Ziemke 2002).

Finally, we showed that patterns of word use uncovered by LSA and modeled using a

GLM can successfully capture the pattern that is characteristic of each theory. Prediction of

which theory each paper espouses with these models is considerably higher than chance

both for seen and unseen data, and it can reach considerably high performance.

Examination of the meaning of dimensions

One of the limitations of LSA is that the dimensions of the semantic space that the

methodology creates can lack an intuitive interpretation without further processing (Berry

et al. 1995; Hu et al. 2007). The meaning of each dimension is highly abstract (Olmos

et al. 2014), which makes identifying the meaning of the categories found by this

methodology an under-explored area of research (Evangelopoulos 2013). However, a

number of procedures that attempt to do just that have been proposed recently.4 One is

based on performing rotations on the matrices resulting from the SVD (Sidorova et al.

2008; Evangelopoulos 2013), and another is based on projecting these matrices onto a new

space (Hu et al. 2007; Olmos et al. 2014, 2016). We applied the first one to our model.

This decision was based on the relative ease with which we obtained encouraging results.5

The methodology we used was presented by Sidorova et al. (2008) and Evangelopoulos,

Evangelopoulos et al. (2012). Inspired by Factor analysis, they propose performing a

varimax rotation on the term loadings resulting from the SVD, and then projecting the

document loadings onto the new rotated space. Both loadings matrices use only the first

D dimensions resulting from the SVD. The meaning of each dimension is then extracted by

looking at the highest scoring terms on it. In our application of the methodology, we should

aim to extract the highest scoring terms of the dimensions that best characterize each

theory.

4 We thank the anonymous reviewers for pointing us towards this research.
5 We also explored the second methodology, as it holds much promise. However, our study is based on a
relatively small set of words, and so choosing a new ‘‘word base’’ for doing this transformation proved to be
more difficult, and tended to produce less stable results.
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To apply this methodology to our dataset and categories, we need to first choose which

dimensions would be associated with each theory. Thanks to the steps involved in our

methodology to predict the theory of papers, we had already devised a way to rank

dimensions in relation to our eight theories in a given matrix of document loadings.

Following our previous method, we ranked each dimension in the new semantic space

according to how well it predicted that a document belongs to a theory when compared to

each other theory using the GLM models. The coefficient of each of the dimensions

selected for the theories was used to determine if the terms are positively or negatively

related to a given theory, and how strong that relationship is. For the former, we used the

sign of the coefficient: if the coefficient resulting from the GLM was positive, then the

terms positively predict that theory, and vice versa. For the latter, we used the value of the

coefficient multiplied by the score of that term in that dimension. If the score of the term in

that dimension is negative, it was changed to 0. After determining the weight for each

dimension and each theory, the scores for each term in each of the dimensions were

summed. This was the final weight of the term for that theory.

As an example, in the procedure applied to a varimax rotation of D ¼ 50, the term

affordances appears on dimension 22, which is the second dimension that most positively

predicts ecological. The coefficient of dimension 22 for ecological is 8.516. The score of

affordances on dimension 22 is 0.145. Thus, the weight for affordances on dimension 22 is

1.226. After summing the weights of affordances in all 50 dimensions, its final weight is

18.061, the fourth highest weighted term for ecological, with a median weight of 1.957 and

a mean of 2.469.

For visualizing the resulting terms of the dimensions, we decided to use word clouds

generated through the R package wordcloud (Fellows 2014). This package shows terms in

a size dependent on their frequency; to obtain this, we rounded the final weights of each

term to obtain an integer. For proper visualization, the word clouds were limited to 50

dimensions per theory. Furthermore, we generated two word clouds per theory: one

including the terms with the most weights in the dimensions that positively predict the

theory, and one with those in the dimensions that negatively predict the theory.6

Figures 10 and 11 show the word clouds for ecological and Bayesian respectively, for a

varimax rotation of D ¼ 50. These figures align very well with intuitions regarding the

contents of these theories: perception, affordances, Gibson and environment feature

prominently in the ecological cloud, while inference, rational, probabilistic and prior

appear in the Bayesian one. There are still problematic members of the set, however, like

language and strategy in ecological.

Because of how sensitive the procedure is to the choice of parameters, specifically the

number of dimensions chosen to be rotated, the intuitiveness of the results for each theory

can vary depending on it. Figures 12 and 13 show the word clouds for embodied at two

different parameter settings. Although D ¼ 50 features some important words for the

theory like action, perception, sensorimotor and motor, D ¼ 80 features more centrally a

wider array of relevant concepts for the theory in addition to them, like emotion, language,

and experience. Meanwhile, Fig. 14 shows the word cloud at D ¼ 80 for ecological. In it,

one of the most central concepts for the theory—the concept of affordances—is displaced

by less intuitive terms like social, state and temporal.

Finally, the words that most negatively predict the theories can also be intuitive. Fig-

ure 15 shows the negative cloud for symbolic at D ¼ 50, which features some intuitive

6 Due to space constraints, we can only show a few of these word clouds. However, a more thorough
exploration of the parameters can be found in the aforementioned GitHub repository.
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terms such as affordances, action, social, dynamic and interaction. However, there are also

seemingly unrelated terms, considering the history of this approach to cognitive science,

such as cognition, word, experiment and representation.

It is therefore possible to extract intuitive and meaningful results from the semantic

model we have used of each of the theories. However, the methodology we used is not free

from important considerations. In particular, it is very sensitive to parameters and choices.

Thus, the results in this section serve merely as tentative and qualitative explorations.

Future analysis may leverage these and other methods to uncover robust word-theory

relationships. We have shown a few of these here, suggesting the goal has some promise.

General discussion

In the preceding sections, we aimed to test if a quantitative method could be used to

capture the theoretical make up of a field. We have found that LSA on a sample of text can

indeed capture interesting properties of this theoretical landscape: Different theories of a

field could be related to different patterns of word use. Interestingly, the insights shared

long ago by Vygotsky and Kuhn about the role of language and theory development may

ring true under a modern quantitative lens. In particular, the LSA model reveals semantic

dimensions that characterize these fields differently. This could be an explanation of the

perceived theoretical stalemate of the discipline, as semantic variance has traditionally

been seen as one of the possible sources of theory incommensurability (Sankey 1997).

Consider, for example, the results on self-similarity. The most self-similar frameworks

in our dataset are enactive and ecological, suggesting that these may be very tightly knit

abstracts terminologically (and perhaps, though with great caution, we might say con-

ceptually). This may reflect a kind of conceptual boundary that demarcates these two

theories, insulating them from cross-talk with others, such as more traditional information-

processing accounts. Take another example from our qualitative investigation of how these

theories cluster (e.g., Fig. 5). There, we find that dynamical is very confusable with some

of the members of its cluster. Enactive and embodied are confused over 15% of the time

with it. A similar point can be made about Bayesian approaches based on the dendrograms.

Although it clusters with connectionism and symbolic, it is the closest one to the other

cluster; moreover, as can be seen in ‘‘Appendix 3’’, it is the only theory that changes cluster

in lower dimensionality. This, and the other cross-cluster confusions, suggest a possible

way of bridging gaps in the future. By finding that there is terminological proximity

between theories A and B, and between B and C, we may find that working towards

rapprochement among all three is through theory B. In our results, this theory B would be

Bayesian, as it may have ingredients inviting connections among this cluster. Indeed,

Bayesian models are often computations over individuated ‘‘representations’’ (hypotheses),

a process that is probabilistic (akin to more dynamic, gradient theories), all performed

through experiential input. Its status as a bridge may be surprising to some, but our analysis

suggests it.

These efforts could be aided by a more robust exploration of the meanings in the

semantic space. We uncovered some interesting and intuitive patterns that suggest that the

bridges between theories could be looked for in the specific terminological patterns of each

theory. Moreover, this could also reveal the underlying structure of each cluster, and aid in

the current efforts of characterizing cognitive science and its sharp theoretical divide. A

peripheral benefit of this characterization might be practical in nature. Classic application

of LSA and related semantic space models is on document retrieval problems (Dumais
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1991). Document indexing systems could be equipped with ‘‘theoretically normalized’’

versions of the indexing data. Such normalization may be based on human judges, or by

automated techniques based on generalizations of what we show here. This might allow

researchers to connect related ideas or threads of research that share conceptual founda-

tions, facilitating new connections among researchers and literatures.

Our results involve a variety of such observations. But it is merely speculative that this

terminological coherence and connectivity would reflect the psychology of scientific

practitioners. This cause or correlation—between LSA results and theoretical and scientific

practice—would be difficult to test, but is certainly an important question in regards to the

external validity of these LSA analyses. However, although exploratory, our efforts in

quantitative exploration of the features of different theories and their prediction based on

those features shows that there is a conceptual landscape in which theoretical issues could

be situated. Moreover, even though they are still tentative, our exploration of the meaning

of those dimensions shows promise that this landscape not only exists, but could be

precisely mapped in the future.

Our study has a number of limitations that narrow its scope and power. These are

important to recognize, as they may motivate future applications of these quantitative

techniques to theoretical questions.

Firstly, our data collection method is dependent on queries that can seem arbitrary. This

is in addition to the fact that our analysis greatly depends on the predefined taxonomy that

we decided to use, which the search queries reflect. Moreover, the scope of WOK also

limits our results to a constrained database of papers, limiting how representative our

results can be of the whole discipline. Nevertheless, our sample consists of 1000 papers

sampled from these key terms. There is considerable room to expand these papers, but this

may also introduce noise—our selective sample allowed us to have some better confidence

that the papers reflected activity in cognitive science, and not inadvertently some other

distant field in which the terms may also be used (e.g., the term ‘‘symbolic’’ also occurs in

a wide variety of fields in the humanities). However, we think that our methodology is

flexible enough to support subsequent improvements of the categories being tested based

on both internal and external measures of performance.

The data retrieval process can also be expanded and improved upon. We intend to

explore different, more rigorous methods of gathering papers to complement the one

applied in the present study. Alternative methods could point to gathering fundamental

papers from co-citation analysis of the discipline, or off-loading the decision to members of

the community through a survey. With this, our approach could also incorporate into the

semantic analysis the influence of social aspects of the organization of scientific com-

munities that remained in the background in this study. It could also open a window to use

these tools in a discipline with which we are not previously acquainted, reducing even

more the chances of ‘‘seeding’’ the theoretical clusters.

Secondly, and related to the first limitation, the work presented here uses only measures

of performance internal to our corpus—in this case, how well the words of the abstracts

predicted the labels with which we obtained them. Although the results show that there are

indeed different categories within the corpus, corresponding approximately with our

assigned labels, the high performance could be reflecting categories whose interpretations

differ from our expectation. Thus, a future improvement upon this work would include

external human judges with which to compare the performance of the model.7

7 We thank an anonymous reviewer for this suggestion.
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Thirdly, a purely semantic way for conceiving of theories downplays the social aspects

that have traditionally been used to study theoretical landscapes, such as citation or social

network analysis (Bergmann and Dale 2016). Our database is limited exclusively to

abstracts, which, apart from the obvious differences of length, have a different commu-

nicative goal than full articles.

Finally, and most relevantly, our application of methodologies for extracting the

meaning out of the semantic model remains incomplete. Because of the heavy

parametrization needed to achieve better results, this fell outside of the scope of our current

analysis. Fine-tuning the methodology we used, and exploring the results of other

promising approaches, is an obvious extension of the current work.

We could also look to topic modeling to complement these analysis (Griffiths and

Steyvers 2004). Previously, in contrast with our assumptions about the underlying semantic

structure of the discipline, cognitive science has been represented as being comprised of a

set of topics, which consist of probability distributions of words. Each document, then, can

be seen as having been probabilistically generated following the topics it contains. Using

these assumptions, Bergmann and Dale (2016) explored the topic makeup of a specific

issue within cognitive science, the evolution of language. They found three clearly defined

clusters of 20 topics in the submissions to the EvoLang conference. Using a similar

strategy, Priva and Austerweil (2015) modeled the topic makeup of the articles published

in the journal Cognition over its existence. They found that topic models can successfully

track significant changes over time of the predominant issues and problems in cognitive

science, such as the rise of moral cognition, through changes in the proportion of the

contribution of each topic each year.

Time dynamics could be incorporated into the analysis of the discipline. In line with

some of the work by Gentner (2010), one could explore the proportion of documents

coming from each of the disciplines that make up cognitive science’s core, using the

journal Cognitive Science and the Cognitive Science conference over time. Gentner found a

progressive hegemonization of the discipline by psychology, with shrinking contributions

from, for example, computer science. Our tools could be used, then, to explore the

changing relations of the different theories that we identified in the preceding work. There

is a recent precedent for the use of LSA in exploring the time dynamics of word: Word

Maturity (Kireyev and Landauer 2011; Jorge-Botana et al. 2018). This methodology

models the change of meaning of a complete word space by comparing a reference rep-

resentation of a corpus with intermediate stages, measuring the maturity a given word at a

given time step. Although it has been used mainly for studying language development in

infants by using an adult corpus as reference, the methodology could be applied to a

scientific discipline by using a recent year as reference to measure the trajectories that the

meanings of specific key words have followed.

Despite these limitations, our study does show that theoretical outlook has a correlate

with observable and quantifiable aspects of the papers of a discipline. This does not, of

course, offer a clear way forward for integration or resolution in the debates of cognitive

science. It does, however, provide an initial demonstration that this problem can be sup-

plemented with quantitative analysis. It may be possible to build a quantitative map of the

landscape of problems and solutions in contention within the discipline. Such a quantitative

map may serve as a useful tool for confirming profound theoretical disagreement, and

perhaps even finding unexpected rapprochement.

Acknowledgements We want to thank professors Paul Smaldino and Jeff Yoshimi for their feedback on this
paper. Thanks to Martin Irani for his help with coding and feedback on the preliminary results.
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Appendix 1: Search filters

For the search procedure, quotes were used on the keywords that generated the most

confusion on the results due to how common the words used are. Only references classified

as articles, proceedings paper, reviews, book chapters and editorial material were

downloaded.

The following subdiscipline categories provided by WoS were used (in alphabetical

order):

Behavioral Sciences; Computer Science—Artificial Intelligence; Computer Science—

Cybernetics; Computer Science—Information Systems; Computer Science—Interdisci-

plinary Applications Computer Science—Theory Methods; History Philosophy of Science;

Language—Linguistics; Linguistics; Neurosciences; Philosophy; Psychology; Psychol-

ogy—Applied; Psychology—Biological; Psychology—Developmental; Psychology—Ed-

ucational; Psychology—Experimental; Psychology—Mathematical; Psychology—

Multidisciplinary; Psychology—Social; Robotics; Social Sciences—Interdisciplinary

Appendix 2: Entropy calculation

The formula with which each cell was weighted in our analysis, from (Martin and Berry

2007, p. 38). Each cell was weighted locally with the logarithm of frequency plus 1,

log fij þ 1
� �

. Then, that value was multiplied by the entropy of each one of the terms:

1þ
X

j

Pij � log2 Pij

log2 n

where Pij is the number of times the term i appears in document j, divided by the number of

times the term appears in all of the documents, and n is the total number of documents in

the dataset. This formula assumes that terms that appear in fewer documents are more

informative than terms that appear in more documents. Thus, the values of the former are

relatively increased, while the values of the latter are relatively diminished.

Appendix 3: Other dendrograms

In Figs. 16 and 17, we present the dendrograms that obtain by using the values lower

(D ¼ 3) and (D ¼ 5) than the range of the stable dendrogram presented in Fig. 2. Figure 18

shows the same D as the one used to produce Fig. 2 (D ¼ 10), but including a random-

ization of the theory labels attached to each paper (Figs. 19, 20, 21, 22, 23).
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Appendix 4: Selection of number of dimensions to evaluate

Appendix 5: Prediction performance across values of D

enactive embodiedconnectionism symbolic bayesian dynamical distributed ecological

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Fig. 18 D ¼ 10. Randomized theories. Note the low distance values between the tree branches in
comparison to Fig. 2, on the y axis
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Fig. 19 Mean performance of the prediction by changing the number of dimensions allowed to be evaluated
when selecting the best predictors for each theory. Peak performance is achieved by limiting it to 80
dimensions (red line). However, performance is robust, so this parameter can be changed without much
decrease in performance. Results aggregate over 1000 iterations. (Color figure online)
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Fig. 20 Mean performance of the GLM of each theory. D is the number of dimensions used for the model.
Results aggregate over 10, 000 iterations
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Fig. 21 Mean performance of the 8 models across values of D. Aggregated over 10, 000 iterations
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Fig. 22 Mean performance of the GLM of each theory using new data set. D is the number of dimensions
used for the model. Results aggregate 10, 000 iterations
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Appendix 6: Prediction performance in randomization condition

Figure 24 shows the prediction confusion matrix for D ¼ 20 the eight different theories

with randomization of labels. The maximum value shown is 16.9% of confusion (embodied

- ecological) and the minimum value is 8% (distributed - enactive). Figure 25 shows the

mean performance for the prediction (y-axis) for each theory (x-axis) when theory labels

are randomized.
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Fig. 23 Mean performance of the 8 models across values of D using new data set. Results aggregate 10, 000
iterations
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